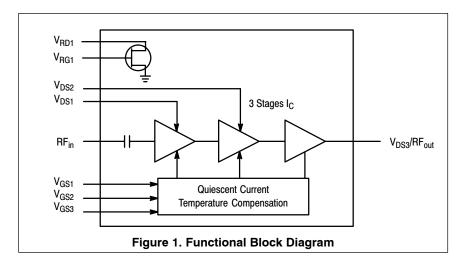
Freescale Semiconductor

Technical Data

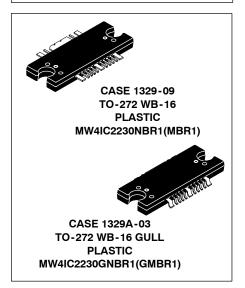
RF LDMOS Wideband Integrated Power Amplifiers

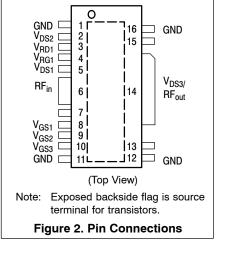
The MW4IC2230 wideband integrated circuit is designed for W-CDMA base station applications. It uses Freescale's newest High Voltage (26 to 28 Volts) LDMOS IC technology and integrates a multi-stage structure. Its wideband On-Chip design makes it usable from 1600 to 2400 MHz. The linearity performances cover all modulations for cellular applications: GSM, GSM EDGE, TDMA, CDMA and W-CDMA.


Final Application

 Typical Single-carrier W-CDMA Performance: V_{DD} = 28 Volts, I_{DQ1} = 60 mA, I_{DQ2} = 350 mA, P_{out} = 5 Watts Avg., f = 2140 MHz, Channel Bandwidth = 3.84 MHz, Peak/Avg. = 8.5 dB @ 0.01% Probability on CCDF.

Power Gain — 31 dB Drain Efficiency - 15% ACPR @ 5 MHz = -45 dBc @ 3.84 MHz Bandwidth


Driver Application


- Typical Single-carrier W-CDMA Performance: $V_{DD} = 28$ Volts, $I_{DQ1} =$ 60 mA, I_{DQ2} = 350 mA, P_{out} = 0.4 Watts Avg., f = 2140 MHz, Channel Bandwidth = 3.84 MHz, Peak/Avg. = 8.5 dB @ 0.01% Probability on CCDF. Power Gain - 31.5 dB ACPR @ 5 MHz = -53.5 dBc @ 3.84 MHz Bandwidth
- Capable of Handling 3:1 VSWR. @ 28 Vdc. 2170 MHz. 5 Watts CW **Output Power**
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked, >5 Ohm Output)
- Integrated Quiescent Current Temperature Compensation • with Enable/Disable Function
- On-Chip Current Mirror g_m Reference FET for Self Biasing Application ⁽¹⁾
- Integrated ESD Protection •
- N Suffix Indicates Lead-Free Terminations •
- 200°C Capable Plastic Package •
- Also Available in Gull Wing for Surface Mount
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel

2110-2170 MHz, 30 W, 28 V SINGLE W-CDMA **RF LDMOS WIDEBAND** INTEGRATED POWER AMPLIFIERS

1. Refer to AN1987/D, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1987.

MW4IC2230 Rev. 3, 1/2005

© Freescale Semiconductor, Inc., 2005. All rights reserved.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +8	Vdc
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Channel Temperature	TJ	200	°C
Input Power	P _{in}	20	dBm

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ⁽¹⁾	Unit
Thermal Resistance, Junction to Case	R _{θJC}		°C/W
Stage 1		10.5	
Stage 2		5.1	
Stage 3		2.3	

Table 3. ESD Protection Characteristics

Test Conditions	Class
Human Body Model	2 (Minimum)
Machine Model	M3 (Minimum)
Charge Device Model	C5 (Minimum)

Table 4. Moisture Sensitivity Level

24 V<Vds<28 V)

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_C = 25°C unless otherwise noted)

|--|

Functional Tests (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1} = 60 mA, I_{DQ2} = 350 mA, I_{DQ3} = 265 mA, P_{out} = 0.4 W Avg., f = 2110 MHz, f = 2170 MHz, Single-carrier W-CDMA. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz

Offset. Peak/Avg. Ratio = 8.5 dB @ 0.01% Probability on CCDF.					
Power Gain	G _{ps}	29	31.5	_	dB
Input Return Loss	IRL	_	-25	-10	dB
Adjacent Channel Power Ratio $\begin{array}{l} P_{out} = 0.4 \text{ W Avg.} \\ P_{out} = 1.26 \text{ W Avg.} \end{array}$	ACPR		-53.5 -52	-50	dBc
Stability (10 mW <p<sub>out<5 W CW, Load VSWR = 3:1, All Phase Angles,</p<sub>		No Spurious > -60 dBc			

Typical Performances (In Freescale Test Fixture tuned for 0.4 W Avg. W-CDMA driver) V_{DD} = 28 Vdc, I_{DQ1} = 60 mA, I_{DQ2} = 350 mA, I_{DQ3} = 265 mA, 2110 MHz<Frequency <2170 MHz

Saturated Pulsed Output Power (f = 1 kHz, Duty Cycle 10%)	P _{sat}	_	43	_	W
Quiescent Current Accuracy over Temperature (-10 to 85°C)	ΔI_{QT}		±5	—	%
Gain Flatness in 30 MHz Bandwidth	G _F	_	0.13	_	dB
Deviation from Linear Phase in 30 MHz Bandwidth	Φ	_	±1	_	0
Delay @ P _{out} = 0.4 W CW Including Output Matching	Delay	_	1.6	_	ns
Part to Part Phase Variation	$\Delta \Phi$	_	±15	_	0

1. Refer to AN1955/D, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

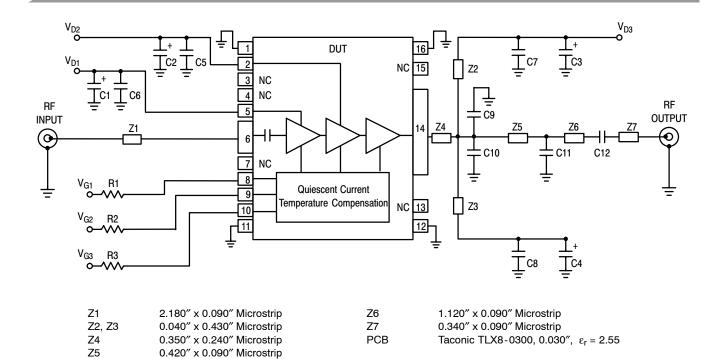
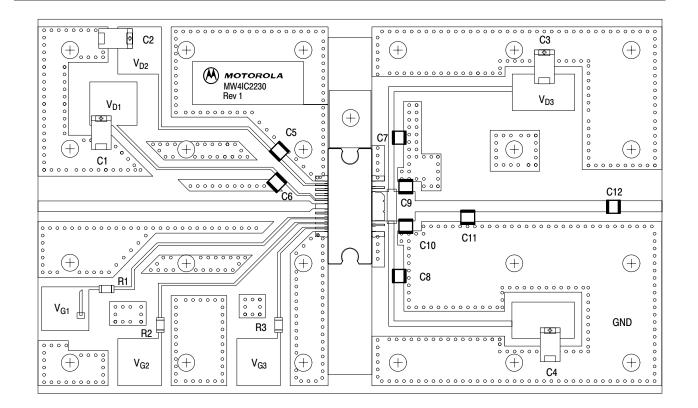

(continued)

Table 5. Electrical Characteristics (T_C = 25° C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Typical Performances (In Freescale Reference Application Circuit tuned for 2-carrier W-CDMA signal) V _{DD} = 28 Vdc,					
Pout = 0.4 W Avg., IDQ1 = 60 mA, IDQ2 = 400 mA, IDQ3 = 245 mA, f1 = 2112.5 MHz, f2 = 2122.5 MHz and f1 = 2157.5 MHz, f2 = 2167.5 MHz,					
2-carrier W-CDMA, 3.84 MHz Channel Bandwidth Carriers. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. IM3					
measured in 3.84 MHz Channel Bandwidth @ +10.MHz Offset Peak/Avg = 8.5 dB @ 0.01% Prohability on CCDE					


measured in 3.04 Minz Channel Bandwidth @ 110 Minz Chiset. Feak/Avg. = 8.5 db @ 0.01% Frobability on CCD1.					
Power Gain	G _{ps}	_	31.5		dB
Intermodulation Distortion	IM3	_	-52	_	dBc
Adjacent Channel Power Ratio	ACPR	—	-55	—	dBc
Input Return Loss	IRL		-26		dB

NOTE - **CAUTION** - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

Figure 3. MW4IC2230NBR1(MBR1)/GNBR1(GMBR1) Test Circuit Schematic

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4	10 µF, 35 V Tantalum Capacitors	TAJD106K035	AVX
C5, C6, C7, C8, C12	8.2 pF 100B Chip Capacitors	100B8R2CW	ATC
C9, C10	1.8 pF 100B Chip Capacitors	100B1R8BW	ATC
C11	0.3 pF 100B Chip Capacitor	100B0R3BW	ATC
R1, R2, R3	1.8 k Ω Chip Resistors (1206)		

Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.

Figure 4. MW4IC2230NBR1(MBR1)/GNBR1(GMBR1) Test Circuit Component Layout

TYPICAL CHARACTERISTICS

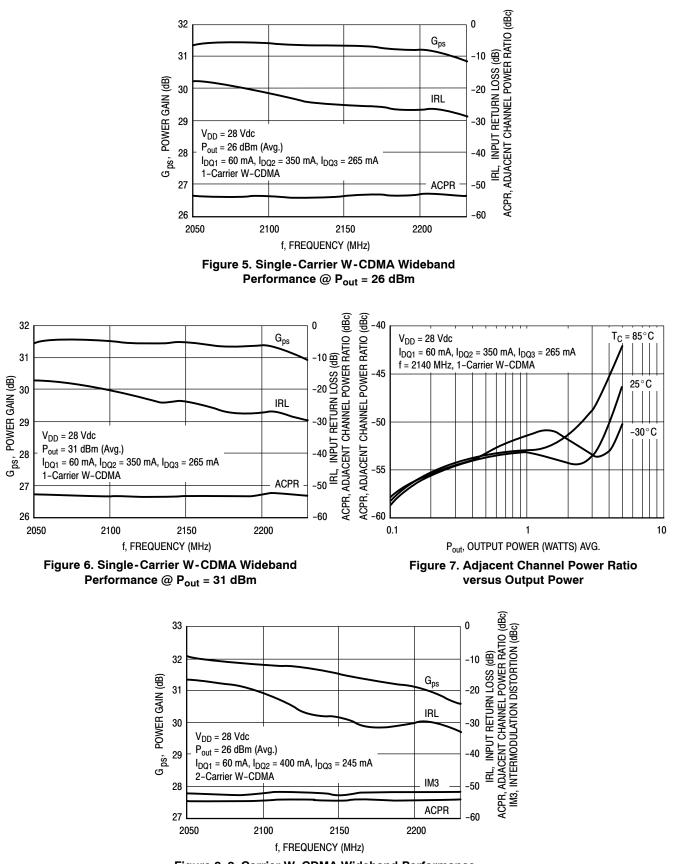
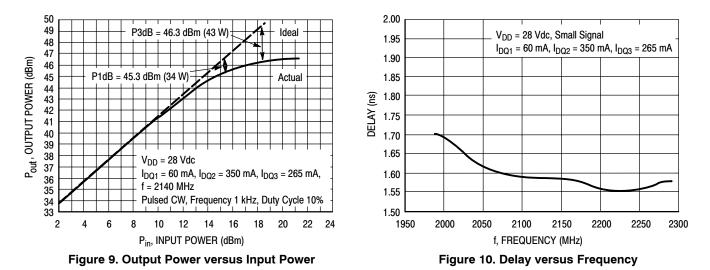
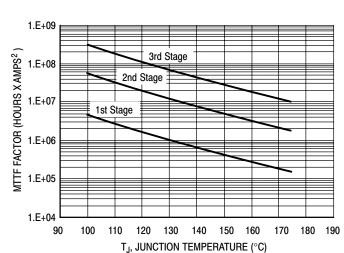
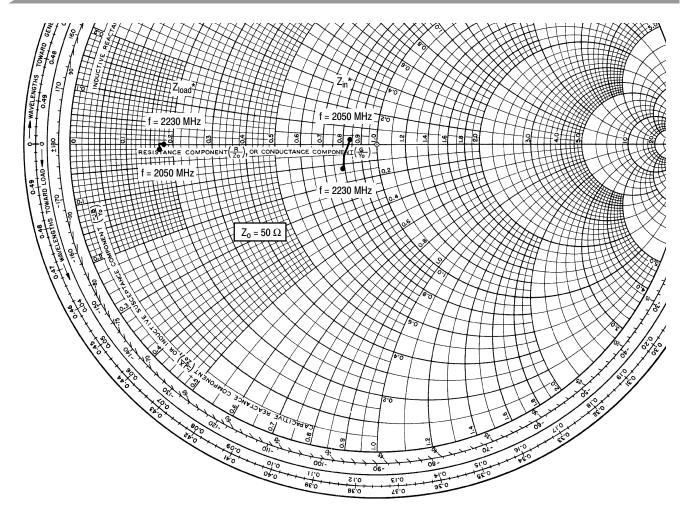
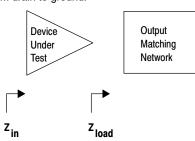




Figure 8. 2-Carrier W-CDMA Wideband Performance


TYPICAL CHARACTERISTICS

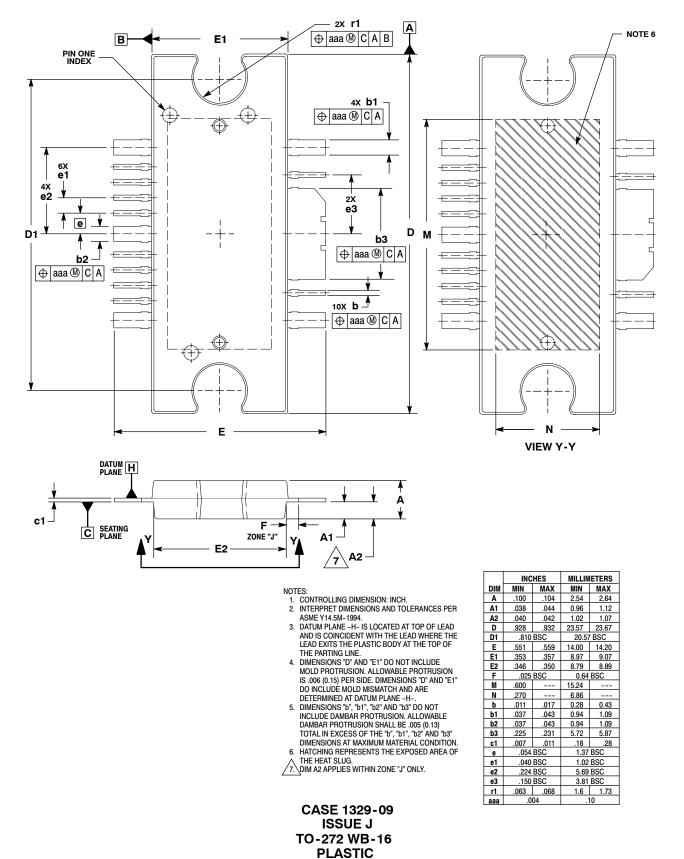
This above graph displays calculated MTTF in hours x ampere² drain current. Life tests at elevated temperatures have correlated to better than $\pm 10\%$ of the theoretical prediction for metal failure. Divide MTTF factor by I_D^2 for MTTF in a particular application.

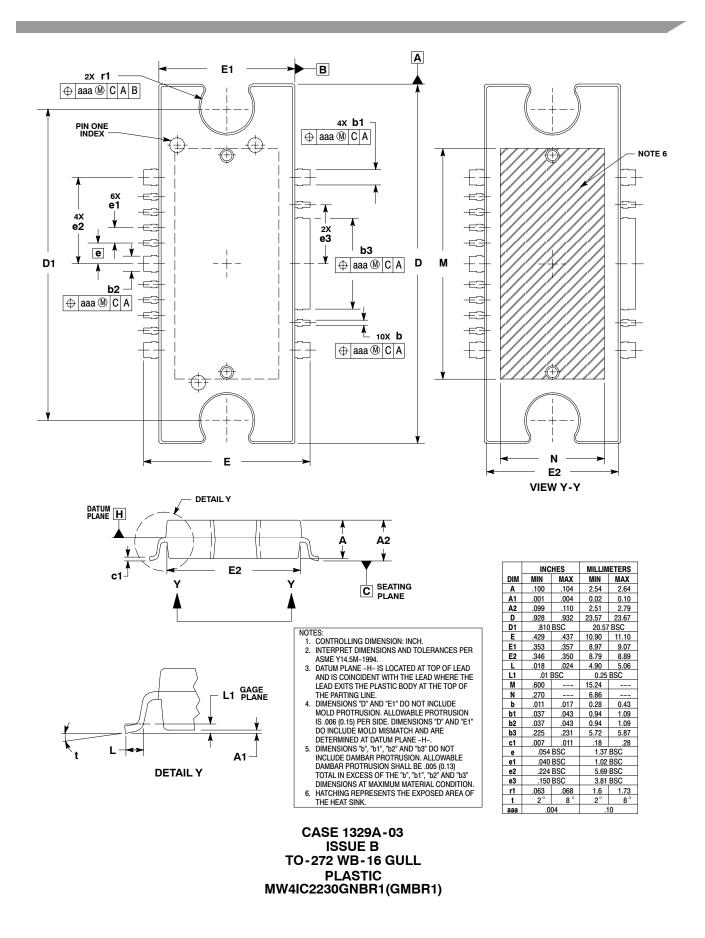


 V_{DD} = 28 V, I_{DQ1} = 60 mA, I_{DQ2} = 350 mA, I_{DQ3} = 265 mA, P_{out} = 26 dBm

f MHz	Z_{in} Ω	Z_{load} Ω
2050	42.18 + j1.49	8.52 - j0.46
2110	41.06 - j1.30	8.58 - j0.20
2140	40.49 - j2.42	8.63 - j0.09
2170	40.05 - j3.45	8.69 - j0.01
2230	39.29 - j6.31	8.81 + j0.04

 Z_{in} = Device input impedance as measured from gate to ground.


Z_{load} = Test circuit impedance as measured from drain to ground.



NOTES

PACKAGE DIMENSIONS

MW4IC2230NBR1(MBR1)

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005. All rights reserved.

